Encoding Intelligent Agents for Uncertain, Unknown, and Dynamic Tasks: From Programming to Interactive Artificial Learning

نویسندگان

  • Jacob W. Crandall
  • Michael A. Goodrich
  • Lanny Lin
چکیده

In this position paper, we analyze ways that a human can best be involved in interactive artificial learning against a backdrop of traditional AI programming and conventional artificial learning. Our primary claim is that interactive artificial learning can produce a higher return on human investment than conventional methods, meaning that performance of the agent exceeds performance of traditional agents at a lower cost to the human. This claim is clarified by identifying metrics that govern the effectiveness of interactive artificial learning. We then present a roadmap for achieving this claim, identifying ways in which interactive artificial learning can be used to improve each stage of training an artificial agent: configuring, planning, acting, observing, and updating. We conclude by presenting a case study that contrasts programming using conventional artificial learning to programming using interactive artificial learning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

User-based Vehicle Route Guidance in Urban Networks Based on Intelligent Multi Agents Systems and the ANT-Q Algorithm

Guiding vehicles to their destination under dynamic traffic conditions is an important topic in the field of Intelligent Transportation Systems (ITS). Nowadays, many complex systems can be controlled by using multi agent systems. Adaptation with the current condition is an important feature of the agents. In this research, formulation of dynamic guidance for vehicles has been investigated based...

متن کامل

Cima: An Interactive Concept Learning System for End-User Applications

Personalizable software agents will learn new tasks from their users. In many cases the most appropriate way for users to teach is to demonstrate examples. Learning complex concepts from examples alone is hard, but agents can exploit other forms of instruction that users might give, ranging from yes/no responses to ambiguous, incomplete hints. Agents can also exploit background knowledge custom...

متن کامل

Hierarchical Functional Concepts for Knowledge Transfer among Reinforcement Learning Agents

This article introduces the notions of functional space and concept as a way of knowledge representation and abstraction for Reinforcement Learning agents. These definitions are used as a tool of knowledge transfer among agents. The agents are assumed to be heterogeneous; they have different state spaces but share a same dynamic, reward and action space. In other words, the agents are assumed t...

متن کامل

A hybrid CS-SA intelligent approach to solve uncertain dynamic facility layout problems considering dependency of demands

This paper aims at proposing a quadratic assignment-based mathematical model to deal with the stochastic dynamic facility layout problem. In this problem, product demands are assumed to be dependent normally distributed random variables with known probability density function and covariance that change from period to period at random. To solve the proposed model, a novel hybrid intelligent algo...

متن کامل

Adaptive Approximation-Based Control for Uncertain Nonlinear Systems With Unknown Dead-Zone Using Minimal Learning Parameter Algorithm

This paper proposes an adaptive approximation-based controller for uncertain strict-feedback nonlinear systems with unknown dead-zone nonlinearity. Dead-zone constraint is represented as a combination of a linear system with a disturbance-like term. This work invokes neural networks (NNs) as a linear-in-parameter approximator to model uncertain nonlinear functions that appear in virtual and act...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009